skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cerovečki, I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mode waters are critical for ocean ventilation and carbon sequestration. Using observations, we trace their subduction pathways and biogeochemical evolution. Solving modified mixing equations that account for respiration reveals that less than 50% of the oxygen changes along mode water ventilation pathways are due to respiration within the water mass, the rest being due to mixing with oxygen‐poorer surrounding waters. Consequently, measured changes in oxygen or Apparent Oxygen Utilization overestimate respiration by a factor of up to two, as do derived biogeochemical quantities such as remineralized carbon. Measured nitrate changes either overestimate or underestimate remineralization depending on surrounding concentrations. Mean true respiration rates in mode waters range from −0.1 to −0.4 mol . Applying a fixed stoichiometric ratio to this respiration, we find that the total carbon export is highest in Southern Ocean mode waters, while carbon remineralization rates are highest in subtropical mode waters. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  2. Abstract Subantarctic Mode Water (SAMW) in the Pacific forms in two distinct pools in the south central and southeast Pacific, which subduct into the ocean interior and impact global storage of heat and carbon. Wintertime thickness of the central and eastern SAMW pools vary predominantly out of phase with each other, by up to ±150 m between years, resulting in an interannual thickness see‐saw. The thickness in the eastern (central) pool is found to be strongly positively (negatively) correlated with both the Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO). The relative phases of the SAM and ENSO set the SAMW thickness, with in phase reinforcing modes in 2005–2008 and 2012–2017 driving strong differences between the pools. Between 2008 and 2012 out of phase atmospheric modes result in less coherent SAMW patterns. SAMW thickness is dominated by local formation driven by SAM and ENSO modulated wind stress and turbulent heat fluxes. 
    more » « less